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Abstract

This paper outlinesan experimentincooperativeroboticmanipulationconductedat Stanford'sAero-

spaceRoboticsLaboratory.Inadditiontocooperativedynamic control,thesystem incorporatesreal-time
visionfeedback,a novelprogramming technique,and a graphicalhigh-leveluserinterface.By focusingon

theverticalintegrationproblem,we axeexaminingnot onlythesesubsystems,but alsotheirinterfacesand

interactions.
The controlsystem implements a multi-levelhierarchicalstructure;the techniquesdevelopedforop-

eratorinput,strategiccommand, and cooperativedynamic controlarepresented.At the highestlevel,a

mouse-basedgraphicaluserinterfaceallowsan operatorto directthe activitiesof the system. Strategic
command isprovidedby a table-drivenfinitestatemachine; thismethodology providesa powerfulyet

flexibletechniqueformanaging the concurrentsystem interactions.The dynamic controllerimplements

"objectimpedance control'--anextensionofNevillHogan'simpedance controlconcepttocooperative-arm

manipulationofs singleobject.
Experimentalresults_e presented,showingthesystemlocatingand identifyingamoving object,"catch-

ing"it,and performinga simplecooperativeassembly.Resultsfrom dynamic controlexperimentsare also

presented,showingthe controller'sexcellentdynamic trajectorytrackingperformance,whilealsopermit-

tingcontrolofenvironmentalcontactforces.

1 Introduction

This paper presents an overview of the Dynamic and Strategic Control of Co-Operating Manipulators

(DASCCOM) project at Stanford's Aerospace Robotics Laboratory. Due to space constraints, this paper can
only present a very brief overview of the system capabilities; more technical detail and experimental results

can be found in [9,8,2]. Space considerations also prohibit an extensive literature review; this work draws most

heavily on [5,7,3,6]; related research can be found in [1,4,11].

Research goals Space construction requires the manipulation of large, delicate objects. Single manipula-
tor arms are incapable of quickly maneuvering these objects without exerting large local torques. Multiple

cooperating arms do not suffer from this limitation. Unfortunately, utilizing multiple manipulators introduces

many additional problems, among them dynamic complexity and difficult strategic command.

The goal of this project is to study simultaneously the dynamic and strategic issues of cooperative ma-

nipulation, and to demonstrate experimentally a cooperative robotic assembly. We aim not only to master
thc dynamic control problem, but also to provide for simple, conceptual direction of motion by an untrained

operator.

Summary of results The DASCCOM project is now essentially complete, and is capable of performing

simple assembly operations. Implementation of a complete multiple-robot hierarchy has resulted in several

new insights into manipulation and interacting real-time systems. This system integrates for the first time:

• An "object-only" task-specification graphical user interface.

• Finite state table programming, a structured technique for managing asynchronous real-time events and

interacting processes.

• Object impedance control, a cooperative dynamic controller that enforces a specified object behavior.

• A real-time "point-tracking" vision system, capable of ident,fying and tracking multiple objects.
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2 Experimental Dual Manipulator System

The experimental system is designed to emulate a dual-armed space robotic vehicle. Dual two-link robotic

arms (fixed-base in these initial experiments) can manipulate small, freely-floating air-cushion vehicles. The

vehicles are equipped with connectors that can mate with several docking ports in the manipulators' workspace.
The system thus simulates, in two dimensions, the weightless space manipulation and assembly problem.

Mechanical Hardware The experimental facility consists of a pair of two-link manipulators, affixed to the

side of a "small" granite table (4 feet x 8 feet). Each arm is of the popular SCARA configuration--basically

anthropomorphic, with vertical-axis, revolute "shoulder" and "elbow" joints. The arms are equipped with joint

angle sensors and endpoint force sensors. An overhead television camera provides global vision. A photograph
of the experimental setup appears in Figure 1.

Figure 1: Experimental Dual Arm Manipulator System

Computer System Our real-time computer system combines a proven UNIX development environment

with high-performance real-time processing hardware. Motorola 68020/68881 single board processors running
the pSOS real-time kernel provide inexpensive real-time processing power. VME bus shared-memory commu-

nications permit efficient multiprocessor operation. The real-time processors are linked, via the VME bus, to

our Sun/3 engineering workstations. Thus, we benefit from Sun's superb programming environment, while
providing the capacity for relatively cheap, unlimited processing expansion.

Real-time software environment Each real-timeprocessorruns pSOS; a small,fast,priority-drivenmulti-

taskingkernel[10].The featuresused most heavilyby our softwarestructureare the multi-taskingscheduler,

the inter-processmessage facility,and the event-signalfacility.We have alsodeveloped a largearrayofin-house
real-timesoftwareto support control-systemsresearch,[8]presentsdetails.

3 System Structure

The cooperating arms application software consists of four major modules: user interface, strategic control,
dynamic control, and vision. The dynamic control module is further divided into three sub-modules: the

object impedance controller and dynamic controllers for each of the two arms (see Figure 2). Execution of
these modules is spread over three real-time 68020 processors and the Sun workstation.

The command hierarchy The user interface collects conceptual-level commands from the operator, and
communicates them to the strategic controller.
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The strategic control module is responsible for the overall command of the system. It fields high-level

requests from the user interface module, and translates them into sequences of primitives that the dynamic
control module can implement. It also monitors the various conditions and activities of the system and directs

appropriate response actions.
The dynamic control module is responsible for reading the various sensors and calculating the actuator

torques required to produce the desired system behavior.

U_r lntcrfa_

}____

Figure 2: System Structure

System data-flow Data communications between modules is accomplished via simple global data structures.

An interprocessor lock gate is provided with each structure. Two major databases are maintained: the "object"
database contains physical properties and current states of the objects in the workspace (world model), and

the "arms" database contains the desired and measured states (positions, endpoint forces, etc) of each arm.
Since command or temporal information flow is not efficient with shared data structures, bidirectional

byte-stream "channels" are also provided for interprocessor (or interprocess) communications.

4 User Interface

The purpose of the user interface is to gather conceptual commands from the user, and communicate them

to the strategic control module. The user interface should present a clear and intuitive means for the user to

specify his wishes.

Modes of operation Users often wish to communicate with the system at different conceptual levels. To

provide this, the user interface of DASCCOM provides two modes of operation: autonomous execution of

common operations, and manual "teleoperated" manipulation for unusual tasks. This combination allows the

completion of most assembly tasks.
In automatic mode, two "views" of the object being manipulated are displayed. The actual position of the

object is displayed by a solid-lined iconic figure. In addition, a "desired" position of the object is drawn with
broken lines. The user can move the broken-line (ghost) object by clicking on it and dragging it around the

screen.
At all times, the ghost object represents the state that the system will attempt to produce if the mouse

button is released. It is thus a one-move preview of the new state of the system. For instance, to perform a

connection operation, the user can simply point to any connector on an object, and drag it to any matching
connector in the workspace. The display will show the ghost object in the final connected position. When the

move is confirmed, the system performs the sequence of actions required to make the connection, and reports

the status back to the user. This allows quick, simple assembly operations.
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In recognition of impossibility of anticipating all actions, a manual operation mode is also provided. In

manual mode, no ghost object is displayed. Instead, manual mode allows direct access to the object impedance
dynamic controller.

Both modes utilize an object.only interface; the system takes responsibility for all arm motions.

Interface to the strategic controller The user interface executes on the Sun workstation. It communicates

with the strategic control module on the real-time system via a bidirectional byte-stream channel through
VME-bus shared memory.

The protocol utilizes a "request/response cycle" pattern; the user interface requests an action, and the

strategic controller returns a status response when the action completes. The simplicity of this communication
paradigm allows considerable flexibility.

A brief operational description Several frames from a typical session are presented as Figure 3. The

screen is divided into three sections. The large lower section depicts the manipulator workspace in iconic form;

the activities of the system are visually displayed here. The upper left window displays the system status; the

first line in this window gives a short verbal description of the systems activity. A system control panel forms
the upper right section.

In the upper right (second) frame, for example, there are two objects in the vision system's field of view.

Scooter is the floating air-cushion object. Scooter has two gripper attachment ports and two male connectors.

Multibase is a stationary object with female connectors. The arms are currently holding Scooter, as evidenced

by the presence of the Scooter ghost image. The user has just dragged the ghost's right connector over to
Multibase's rightmost connector. The status line indicates that the insertion of one of Scooter's connectors

into one of Multibase's connectors is in progress.

Note that the arms do not appear in the display. The operator commands only object motions; the arm
actions required to effect these motions need not be specified.

An example task: install a part For the sake of this example, suppose that "Multibase" is affixed to a

mobile robot, and represents a series of attach points for holding miscellaneous items. "Scooter" is a part that
is to be installed into a remote module, represented by "Dock".

In the upper left frame, the part is approaching the robot system 1. The operator has just indicated Scooter

is to be grasped, thus the "Acquiring Scooter" status message in the top left corner. In the following frame, the

operator indicates that Scooter should be affixed to the robot's base. Next, the robot is directed to navigate to
the vicinity of Dock (navigational control is not discussed here). When Dock is in view, the operator indicates

that the new part (Scooter) is to be installed. The lower left frame shows the first stage of that action. Finally,
in the last frame, the part has been released, and the installation is complete.

This entire procedure was accomplished with only four simple mouse motions. (Click on the approaching

Scooter, connect Scooter to Multibase, connect Scooter to Dock, release.) Most of the assembly details--such

as how to attach and detach connectors, how fast to approach the docking connector, etc.--are completely
automated.

Summary: User interface In summary, the DASCCOM user interface features:

• A simple mouse-based "point and click" graphical interface.

• "Object-only" task specification; manipulation details are left to the system.

• One-step operation previewing.

• Automatic execution of most assembly operations.

• Optional "manual" manipulation at the dynamic object control level.

1Or, equivalently, the robot is approaching the part.
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Figure 3: Installation Demonstratior, Example

5 Strategic Control

The purpose of the strategic controller is to provide an interface b,:tween the conceptual commands provided

by the user interface and the dynamic control module. It furnish,'s the user interface with a set of simplc

automated commands, allowing it to perform many tasks.

An integrated system involving multiple manipulators, real-time vision, and interactive operator control is a

complex, event-driven environment. These systems are naturally concurrent in nature; complex asynchronous
interactions must be managed. With a fundamentally sequential underlying programming paradigm, the

burden of managing these asynchronous events is left to the programmer. A sequential execution stream

model can not, for instance, deal effectively with multiple-arm synchronization, especially if the arms are

running different programs on different processors.

The state table programming technique This section presents an alternative programming methodology,

referred to as state table programming. It provides a naturally event-driven structure to guide the programmer

in producing code that is easily interfaced to other real-time system modules. It directly exploits the facile

multiple-process generation and communications provided by modern real-time kernels. In fact, management

._f multiple asynchronous events is central to the structure of the syst,_m; the programmer is actively encouraged

_o divide the problem into small, independently executing programs. In addition, it is based on a very intuitive

task description technique.
The state table programming technique is neither a robot programming language nor a replacement for a

library of robot control routines. For instance, trajectory generatiou utilities and world modeling utilities are

also required. The technique merely provides a framework that weaves the multiple streams of execution in

the system into an easy-to-use structure.
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State transition graphs State transition graphs provide a simple, intuitive means of visualizing the

sequence of actions required to effect a task. A "state" is usually characterized by the system performing a
single "step" of an operation, and waiting for some indication of its completion. State transitions are indicated

by arrows labeled with the event that causes the transition. When an event occurs, a transition routine is
executed. The result of that routine determines the next state entered.

For example, Figure 4 presents a simplified series of steps required to catch a moving object. The system

starts out in the "Idle" state. The receipt of the "Acquire" stimulus, presumably sent from a higher level (e.g.

the user interface), causes the system to enter one of two states: "Reaching" if the object is within reach, or

"Waiting", if not. While the system is in the "Reaching" state, the arms are executing an intercept trajectory.
When the trajectory completes ('°TrajComplete" event), the arms track the object until the gripper endpoints

match the targeted grip ports precisely. At this point, the system enters the "Gripping" state while the grippers

engage. Finally, the catch is complete, and the "Manipulating" state is active until a "Release" command is
received.

This is a rather simple example. Much more complex series of actions are easily representable.

Figure 4: State Transition Graph - Catch Task

State table programming The state table entries corresponding to the states of Figure 4 are presented

in table 1. Note that multiple pending conditions are handled very naturally, for example, the "Tracking"
state waits for either "InterceptOK" or "Time".

State Stimulus Transition Routine Next States

Idle Acquire CheckRange Reaching
Waiting Time CheckRange Reaching
Reaching TrajComplete CoordinatedMode Tracking
Tracking InterceptOK GrippersDown Gripping

Time AbortAcquire Idle
Gripping Time CooperativeMode Manipulating
Manipulating Release GrippersUp Idle

Waiting
Waiting

Table 1: State Transition Table

Stimuli may be generated by any of the modules of the system, but most originate from one of two sources:

command stimuli from the user interface, and condition-event stimuli from independently executing "helpers".

The "Acquire" and "Release" stimuli are examples of the former. The "Time" stimulus is created by a simple

helper process that sleeps for a specified time before sending its message. Other helpers (not shown in the

table) perform "safety checks"; for example, the "OutOfRange" stimulus is sent by a process that checks every
so often to insure that the object being acquired is not suddenly moved out of range.
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Implementation The heart of the system is the Finite State Machine (FSM) driver. The FSM driver is an
independently executing process. It acts as a central command post, receiving messages from many sources in

the system and taking the appropriate action. Each message contains a stimulus code; the FSM driver uses
that code to reference the state table and select a state transition routine to execute. The state transition

routines perform the actual work: they change controller modes, start and stop helper processes, and interact

with the trajectory generation module?
The DASCCOM strategic control module supports automatic object capture, docking (connector insertion),

withdrawal, and throwing functions. Each task is executed as a multi-step chain of state transitions.

Summary: Strategic control The DASCCOM strategic controller is based on an event-driven finite state

machine. This technique features:

• An intuitive, graphical task specification.

• Direct tabular implementation.

• A natural, event-driven structure.

6 Cooperative Dynamic Control

The dynamic equations of motion of multiply-armed robotic systems are complex. Strategic control of

the system interactions is also difficult; a consistent set of desired motions must be specified. As of yet, no
satisfactory method of precise dynamic control coupled with a simple strategic command interface has been

developed and experimentally demonstrated.
This section outlines a strategy for the control of a cooperative robotic system that permits high per-

formance dynamic motion control, while also allowing direct control of environmental interactions. This is

accomplished by controlling the manipulated object to react to external environmental stimuli with a pro-

grammable impedance. This facilitates motion direction by presenting a simple yet powerful interface; the

strategic controller need only specify the impedance. Although "exact" inertial force compensation is achieved,
the control structure does not require explicit formulation of the closed-chain dynamic equations of motion, and

is amenable to parallel computation. Object internal forces are explicitly controlled. The object impedance

controller has been implemented on a multi-processor real-time computer system. Experimental results are

presented in section 8 to verify the controller's performance, both for free-motion slews and environmental

contact.

Control objective Hogan's impedance control policy [5] causes the endpoint of the manipulator to react to

external forces with a programmable impedance. The simplest example both to understand and implement is

a simple second order linear impedance--the endpoint behaves as a mass attached via a virtual spring-damper
to the environment. DASCCOM utilizes a dynamic controller that enforces a controlled impedance not of the

arm endpoints, but of the manipulated object itselfl Intuitively, the object behaves as if it were attached to its

environment by linear spring-damper systems in the linear degrees of freedom, and also by uncoupled torsional

spring-dampers to control rotational orientation.
The object impedance controller enforces (for a simple linear sec:ond-order impedance) the relationship:

Here z denotes the coordinate of any one degree of freedom of an arbitrary point fixed in the object's frame.

The constants rod, k_, and kp are specifiable. The reference signal zd,o denotes the desired position (or

orientation) of the chosen point. The xd_ term represents acceleration feed-forward. Thus, the programmable

impedance force corrects deviations from the desired trajectory.
Intuitively, this control policy completely supplants the actual dynamics of the object with a "virtual"

object, with specifiable mass and inertia properties 3. The "virtual" object is attached at its (apparent) center

of mass via an orthogonal set of imaginary damped springs to a selectable point in the environment. Thus,

2The addition of callable sub-chains would add considerable power to the implementation; it is under development.
3Of course, this can only be done within the bandwidth and actuation limits of the system.

347



theobjectcanbemanipulated by simply moving the virtual spring endpoint. Controlled force interactions

with environmental obstacles can be done by simply pressing the "spring" against the obstacle. Thus, both
free motion slews and manipulation requiring contact can be done with the same strategic interface.

The position and orientation of the "virtual" object with respect to the actual object is also selectable. This

selectable "command frame" allows simple specification of many operations. A particularly useful example is

for performing connector insertions--by placing the "virtual" object frame at a fixed location in the connector

frame, all assembly operations can be specified as connector motions only. Multiple connectors arranged on

an object in arbitrary orientations can then be handled by the same simple connector insertion algorithm.

Since the stiffness is selectable, this controller is also capable of pseudo remote center of compliance (RCC)

operation [12], permitting simple and efficient part mating and insertion operations.

Summary: Dynamic Control Space constraints prohibit derivation of the controller here, see [9] for a
more complete treatment. The controller features:

• A simple, powerful object behavior specification interface.

• Good dynamic performance, both in free motion and in contact, without switching controllers.

• Exact dynamic compensation, without requiring closed-chain equations of motion.

• A selectable command frame, facilitating assembly operations.

7 Real-time Vision System

To track moving objects, DASCCOM employs a high-speed television camera-based point-tracking vision

system. The vision system uses a 60 Hz shuttered CCD television camera to track special variable refiectivity
targets. Each object to be tracked is outfitted with a unique pattern of these targets. The vision system

software is then able identify and track individual objects in real-time. Simple linear state estimators also

provide velocity estimates. The arm endpoints are also fitted with targets, and the information is used to
allow endpoint feedback control.

Space considerations prohibit further description here; the system is described in detail in [2]. In summary,
the vision system capabilities are:

• Real-time (60Hz) object position and orientation.

• Sub-pixel resolution (about 1/20 _h of a pixel).

• Multiple object identification and tracking.

8 Experimental Results

A moving object "catch" A "strobe" sequence picture of a typical catch is presented as the left side of

Figure 5. The vision system provides high-speed data for three subsystems to perform this task: the two arms,
and the moving body. Each arm is under vision-guided endpoint control. The desired trajectory for each arm

takes it from its initial "home" position, to an intercept state that matches the object's gripper port in both
position and velocity.

To perform a successful capture, the arm endpoint must then be held over the gripper port for the duration
of the time required for the gripper mechanism to engage. The positioning must be fairly accurate.

The right side of Figure 5 shows the vertical positions and velocities of the right arm and right gripper port

during the catch. The object is being accelerated toward the arm system for the first second. During the next

second, the arm tip accelerates to match the port position and velocity at about the 3.2 second mark 4. The

gripper's downward motion occupies the next second, after which the object is brought to a halt. After the

grippers have engaged (at about 4.4 second mark) the observer has an incorrect plant model; this accounts for
the apparent difference in position and velocity after the capture.

Before the grippers engage, they are under independent endpoint impedance control; after the object is

caught the object impedance controller is in effect. Thus, compliant control is active at all times--this prevents

large acceleration forces during and after the acquisition.

4The arm trajectories axe actually updated several times as the object position and velocity estimates improve.
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Figure 5: A Two-handed Catch

Transport trajectory tracking Five cooperative control algorithms were compared for a cooperative trans-

port task. The five algorithms are: co-located proportional-derivative (PD) joint-space coordinated position

control, dynamic and kinematic coordinated endpoint impedance control, and dynamic and kinematic ob-

ject impedance control. Space constraints only allow presentation of results from two of the controllers here;

see [9,2,8] for more details. The commanded reference is a fifth-order trajectory of the center of mass of the

object in each object degree of freedom: x, y, and/7. All algorithms were provided with the correct coordinated

position, velocity, and acceleration references for the entire slew path.
Figure 6 compares the PD controller to the dynamic object impedance controller. The upper-left plot for

each controller depicts the motion of the center of mass of the y direction. The lower-left is the corresponding

velocity. The upper-right plots x vs. y, and indicates the desired and actual object positions at 0.5 second

intervals during the motion. The lower-right plot shows the magnitude of the "tension" between the arms,

after being corrected for dynamic forces. Both controllers are attempting to maintain zero tension.
The PD controller does a poor job of following the desired trajectory and offers no control of the internal

forces on the object. This controller also does not compensate for inertial forces.
Since the object impedance controller correctly compensates for the object dynamics, the trajectory tracking

performance is quite impressive. The inter-arm tension is controlled well also.

Force control performance Force control data (Figure 7) were obtained by simply placing a hard, sta-

tionary object in the path of the object during a slew. The unfiltered data exhibits some ringing--this is an

impact between two very hard objects--but the force level quickly settles to the desired. The important thing
to note is that the object impedance controller successfully controls the forces of interaction, without switching

control modes, even when it comes into contact with a very stiff environment.

9 Conclusions

This paper has presented an overview of the DASCCOM system. This system integrates strategic and
dynamic control of cooperating manipulators with a real-time vision system and a graphical user interlace.
The techniques developed have'been experimentally proven, and will provide a basis for the Stanford Aerospace
Robotics Laboratory's future space robotics research.
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